Fifth Order Predictor-Corrector Method for Solving Quadratic Riccati Differential Equations
نویسندگان
چکیده
منابع مشابه
Numerical Solution of Hybrid Fuzzy Differential Equations by Adams Fifth Order Predictor-Corrector Method
In this paper we study numerical methods for hybrid fuzzy differential equations by an application of the Adams fifth order predictor-corrector method for fuzzy differential equations. We prove a convergence result and give numerical examples to illustrate the theory.
متن کاملEXTENDED PREDICTOR-CORRECTOR METHODS FOR SOLVING FUZZY DIFFERENTIAL EQUATIONS UNDER GENERALIZED DIFFERENTIABILITY
In this paper, the (m+1)-step Adams-Bashforth, Adams-Moulton, and Predictor-Correctormethods are used to solve rst-order linear fuzzy ordinary dierential equations. The conceptsof fuzzy interpolation and generalised strongly dierentiability are used, to obtaingeneral algorithms. Each of these algorithms has advantages over current methods. Moreover,for each algorithm a convergence formula can b...
متن کاملA Predictor-corrector Scheme for Solving Nonlinear Delay Differential Equations of Fractional Order
Adams-Bashforth-Moulton algorithm has been extended to solve delay differential equations of fractional order. Numerical illustrations are presented to demonstrate utility of the method. Chaotic behaviour is observed in one dimensional delayed systems of fractional order. We further find the smallest fractional order for the chaotic behaviour. It is also observed that the phase portraits get st...
متن کاملImproved predictor-corrector method for solving fuzzy differential equations under generalized differentiability
In this paper, an improved predictor-corrector methods (IPC) to solve fuzzy differential equation under generalized differentiability are discussed. The methods proposed here are based on generalized characterization theorem. Using the Generalized Characterization we can translate a fuzzy differential equation into two ODE systems. Also, the convergence and stability of the proposed methods are...
متن کاملPredictor-corrector Halley method for nonlinear equations
In this paper, we suggest and analyze a new two-step predictor–corrector type iterative methods for solving nonlinear equations of the type f(x) = 0 by using the technique of updating the solution. This method can be viewed as a predictor– corrector iterative Halley’s method. We also consider the convergence analysis of the proposed method. To illustrate the efficiency of this new method, we gi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal Of Engineering & Applied Sciences
سال: 2017
ISSN: 1309-0267
DOI: 10.24107/ijeas.349872